A GLIMPSE INTO
KUBERNETES SECURITY

What could possibly go wrong?

REDGUARD

SECURING YOUR ASSETS

Sven Vetsch

Redguard AG
o Co-founder

o Head of Innovation & Development
Working in information security for 15+ years

Specialized in application security (including
containers, k8s, ...)

Contact: sven.vetsch@redguard.ch

mailto:sven.vetsch@redguard.ch

REDGUARD

SECURING YOUR ASSETS

Redguard

Strategy Web & Mobile
loT & Hardware
Container
System
Network

We also offer a full 2-day hands-on
Kubernetes Security Training

Policy & Concept

Risk & Compliance

Attack
Simulation

Engineer

Security
Officer &
Architect

ISO 2700x

Privacy

Officer Privacy

DevSecOps

Pipeline Incident

Response

Continuous

Business
Continuity

Scanning

Container

Awareness
Campaigns

Architecture

Review Live

Hackings

Security Trainings
Engineering/
Automation E-Learnings
U
/7/']
ectlll'e

2/ 44

REDGUARD

SSSSSSSSSSSSSSSSSS

By 2023, more than 70% of global organizations will be
running more than two containerized applications in
production, up from less than 20% in 2019

http://www.gartner.com/document/3955920

3/ 44

http://www.gartner.com/document/3955920

CONTAINERS

Just a quick recap

Images

Images are the underlying building blocks of each container.

references
parent
image

i - - REDGUARD
Containers vs. Virtual Machines

Containers are isolated,
but share OS and, where
appropriate, bins/libraries

VM ..result is significantly faster deployment,
much less overhead, easier migration,

faster restart

Container

Host OS Host OS

Server

6/ 44

, REDGUARD
Containers

e Containers are not Virtual Machines (VMs)

e Containers leverage abstraction of the OS (VMs leverage abstraction of hardware)
e Containers are “run”, VMs have to boot

e Container == runnable instance of an image

Lightweight (kernel-based namespacing)

Read-write (Copy-on-write (COW)) layer on top of the image

Containers

Outside:

$ ps auxh | wc -1
177

Inside:

ps aux

PID USER TIME
1 root 0:00
11 root 0:00

COMMAND
sh
pPS aux

REDGUARD

SECURING YOUR ASSETS

KUBERNETES

What are we even talking about?

REDGUARD

Whatisk8s? = Semesesis

Kubernetes is a portable, extensible, open-source
platform for managing containerized workloads and
services, that facilitates both declarative configuration
and automation.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

10/ 44

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

To make it easy ...

Kubernetes

I

General Purpose
Platform-as-a-Service (PaaS)
for containers

: REDGUARD
Kubernetes Archtitecture "

12 /44

ATTACK SURFACE

REDGUARD

SECURING YOUR ASSETS

MITRE ATT&CK Threat Matrix

A mapping to Kubernetes was done by Microsoft:

Initial Access Execution Persistence P"‘"Ia?'
Escalation

Using Cloud

Credentials

Compromised images

in registry

Kubeconfig file

Application
vulnerability

Exposed sensitive
interfaces

Exec into container

bash/cmd inside
container

New container

Application exploit
(RCE)

Sidecar injection

Defense Credential
Evation Access

Backdoor container Privileged container ~ Clear container logs List K8s secrets
Writable hostPath Gluslier-‘admln Delete K8s events Mour‘ﬂ service
mount binding principal
Kubernetes CronJob hostPath mount IFEsly ot.JnT.al I’.lef name Aocelss CEAE Ty
similarity service account
L L Applications
Malicious admission ek Connect from proxy arabTiE i
controller server

configuration files

Access managed
identity credential

Malicious admission
controller

0 Lateral
Discovery

Movement

Access the K8s API

Access cloud
server

resources

Access Kubelet API Container service

account

. Cluster internal
Network mapping R
Access Kubernetes 2_22:::;?;
dashboard

configuration files

Instance metadataApl _Vritable volume
mounts on the host

CoreDNS poisoning

ARP poisoning and IP
spoofing

Blog: Secure containerized environments with updated threat matrix for Kubernetes

Images from a private

Data destruction

Resource Hijacking

Denial of service

https://www.microsoft.com/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/

. REDGUARD
Redguard Kubernetes Threat Matrix ="

Kubernetes Threat Matrix

- o Privilege Defense 0 o q
m escalation evasion Credential access Discovery Lateral movement Collection

. oyt Clear
0 Exec into Backdoor Privileged ; "
Using Cloud Container Container Container Co[‘;;':er List KBs secrets
Compromised bash/emd in Writable Cluster-admin Delete k8s Mount service
images in registry container hostPath mount binding events principal
Pod /
Kubeconfig file New container Kubemetes hostPath mount el Acce_ss (ebilizs
CronJob name service account
similarity
Application Application Mall_mo_us Access cloud Connect from b pllca_tlon_s
vulnerability exploit (RCE) Rl resources proxy server crgdent[als o
controller configuration files
Exposed sensitive rurisirgiﬁri‘:wesri de Disable Access managed
interfaces e Namespacing

Sidecar injection

identity credentials

Malicious
admission
controller

Access the K8s

AP server

Access Kubelet
API

Network
mapping

Access
Kubernetes
dashboard

Instance
metadata API

Access cloud
resources

Container service
account

Cluster internal
networking

Applications
credentials in
configuration files

Writable volume
mounts on the host

CoreDNS poisoning

ARP poisoning and
IP spoofing

https://kubernetes-threat-matrix.redguard.ch/

Images from a
private
repository

Data
Destruction

Ressource
hijacking

Denial of
Service

https://kubernetes-threat-matrix.redguard.ch/

REDGUAIRD
Attack Demo

Our attack path / kill chain:

Privilege
Initial access m Persistence escala;?on Credential access Discovery Lateral movement

Clear Images from a
Exec into Backdoor Privileged Access cloud
LopsliefiLs Container Container Container Crasliss List K8s secrets resources £ Des‘ll‘uctlon
Logs repository
Compromised Cluster-admin Delete k8s Mount service Access Kubelet Container service
images in registry binding events principal API account
Pod /
L Kubernetes container Network Cluster internal Denial of
Kubeconiiaifse CronJob name mapping networking Service
similarity

Malicious Applications Access Applications

admission Afg:gﬁ ;I::d C,;?Q:: ZL:L%T credentials in Kubernetes credentials in

controller configuration files dashboard configuration files

Exposed sensitive - nsnsl:‘;lgsﬁrl\:\esr| o Disable Access managed Instance
interfaces e Namespacing identity credentials metadata API
Malicious
Sidecar injection admission CoreDNS poisoning
controller
ARP poisoning and
IP spoofing

16/ 44

DEV OPS CULTURE

It's not just about tech

i . REDGUARD
The Organlzatlon

e The most common "issue”
e Just by calling something Dev Ops it doesn't magically become Dev Ops

e Many companies currently only have 1-2 people who can handle Kubernetes
o |t's the same people that also have to take care of CI/CD pipelines and all the
tooling

o They also are the ones planning the architecture and setting up the systems
o No quality control and if this single person leaves the company ... have fun

e DevSecOps doesn't mean that you had three people (Dev, Sec & Ops) and now one
person can do all of that on his/her own. It's about bringing people closer together
and getting rid of unnecessary boundaries.

e Responsibilities aren't clear (e.g. who defines what an acceptable firewall rule is?)

e \We'll leave this here for now as we want to talk about Kubernetes but keep in mind
that most of the time the current state of the organization is a key problem.

MAINTENANCE

REDGUARD

SECURING YDUR ASSETS

Maintenance

e New (minor) version every four months (was three months before)
o Too fast for many organizations.

o This doesn't yet include all (security) patch releases
e Not enough experience nor automation to risk it.

e Updates must be done both on Kubernetes and the underlying nodes (idealy just
replace them).

e Consider having [Insert Favorite Cloud Provider] maintaining your Kubernetes
cluster(s)

HANDLING OF
CONTAINERS & IMAGES

_ _ REDGUAIRD
Handling of Containers & Images ™"

It's the foundation. If the containers (including the applications running inside them)
are insecure your Kubernetes cluster is at risk too.

Hardening (examples):
o Applications are secure on their own and packages up-to-date

o No privileged: true

o automountServiceAccountToken: false

o Running as non-root user

o Read-only root filesystem (not even once seen rolled out widely in production)
No Cloud Native (Security) Guidelines at companies

Vulnerability scanning of container images
o One of the main things security teams want to have but most of them don't
monitor the status once it is in place and they also don't enforce any restrictions
besides on paper.

- - REDGLARD
Container Image Scanning Example

e Sooner or later vulnerabilities will be identified in packages that you've got in your
Images.

e Automated vulnerability scanning is the key to keep a clear view on the current
security status.

$ trivy -s "LOW,MEDIUM,HIGH,CRITICAL" —-ignore—-unfixed redguard/lab
lab (debian 10.8)

Total: 37 (LOW: 4, MEDIUM: 6, HIGH: 22, CRITICAL: 5)

opt/bitnami/tomcat/webapps_default/RO0T.war (jar)

Total: 8 (LOW: ©, MEDIUM: 2, HIGH: 5, CRITICAL: 1)

.. REDGUARD
Pod (Resource) Limits

e Limiting CPU und memory consumption
e Makes sure that pods/containers can't cause a denial of service situation.

At least you should use:

e AllowPrivilegeEscalation = false
e ReadOnlyRootFileSystem = true
e RunAsNonRoot = true

If you'd like to go even further:

e Seccomp
e AppArmor
e SELinux

SEGREGATION

There's more than namespaces

- REDGUARD
Segregation

e Permissions / Accessibility (RBAC)
Data / Storage
CPU / Memory

Network
o Nearly everywhere we've seen that any pod/container can still reach the kube-api
and e.g. etcd which shouldn't be the case.

Namespaces
Nodes (Taints / Tolerations)

REDGUARD

SECURING YDUR ASSETS

Network Security

e By default there's one flat network (every pod can reach everything)
o This includes the kube-api, etcd, ...

o In "old" networks we e.g. also don't want a web-app frontend to be able to
directly talk to a database.

Use network policies.

Container Network Interface (CNI) plugins like Cilium can provide a lot more granular
policies than the normal NetworkPolicy

e A Service Mesh like Istio can add better visibility and at the same time increase
security (e.g. mTLS between pods)

Keep in mind that old network attacks like IP spoofing or ARP poisoning in general
still work in Kubernetes.

NetworkPolicy Example

namespace: default | |
namespace: prod |

Any container

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1l
metadata:

name: web-deny-all
spec:

podSelector:

matchLabels:
app: web
ingress: []

https://github.com/ahmetb/kubernetes-network-policy-recipes

Any container

REDGUARD

SECURING YOUR ASSETS

https://github.com/ahmetb/kubernetes-network-policy-recipes

ADMISSION CONTROLLER

Policy as Code in Kubernetes

i i REDGUAIRD
Admission Controller

(@‘ >
Mutating Object Schema Validating ETCD
L)
Registered Modified Regis
Webhook Request Webh
Webhook Code
Implementation

e Basically one of the main security layer of Kubernetes

e Most used/known admission controller was PodSecurityPolicy (PSP)
o Removed in Kubernetes v1.25

o Replaced by Pod Security Admission (PSA) / Pod Security Standards (PSS)

a
Decision
[o]

tered
ook
Webhook Code
Implementati

30/ 44

PodSecurityPolicy

apiVersion: policy/vlbetal
kind: PodSecurityPolicy
metadata:
name: restricted
spec:
readOnlyRootFilesystem: true
privileged: false
allowPrivilegeEscalation: false
runAsUser:
rule: 'MustRunAsNonRoot'
supplementalGroups:
rule: 'MustRunAs'
ranges:
- min: 1
max: 65535
fsGroup:
rule: 'MustRunAs'’
ranges:
- min: 1
max: 65535
seLinux:
rule: 'RunAsAny
volumes:
— configMap
- emptyDir
- secret

REDGUARD

SECURING YOUR ASSETS

REDGUARD

Pod Security Standards

There are three different profiles for the Pod Security Standards:

Privileged: Unrestricted policy, providing the widest possible level of permissions. (DANGER ZONE)
Baseline: Minimally restrictive policy which prevents known privilege escalations.

Restricted: Heavily restricted policy, following current Pod hardening best practices.

$ kubectl create ns pss—-demo

namespace/pss—demo created

$ kubectl label ns pss—demo 'pod-security.kubernetes.io/enforce=baseline’
namespace/pss—demo labeled

$ kubectl get ns pss—-demo ——show-labels

NAME STATUS AGE LABELS

pss—-demo Active 2m9s . +..,pod-security.kubernetes.io/enforce=baseline

REDGUARD

Pod Security Standards

cat <<EOF | kubectl apply -f -
apiVersion: vl

kind: Pod

metadata:

name: privileged-pod

namespace: pss—demo

spec:

containers:

— name: privileged
image: nginx
securityContext:

privileged: true
EOF

REDGUARD

Pod Security Standards

cat <<EOF | kubectl apply -f -
apiVersion: vl

kind: Pod

metadata:

name: privileged-pod

namespace: pss—demo

spec:

containers:

— name: privileged
image: nginx
securityContext:

privileged: true
EOF

. pods "privileged—-pod" is forbidden: violates PodSecurity "baseline:latest": privilegec
(container "privileged" must not set securityContext.privileged=true)

REDGUARD

Open POlicy Agent (OPA)

e OPA Gatekeeper - Policy Controller for Kubernetes

apiVersion: constraints.gatekeeper.sh/vlbetal
kind: K8sRequiredLabels
metadata:
name: all-must—-have-owner
spec:
match:
kKinds:
— apiGroups: [""]
kinds: ["Namespace"]
parameters:
message: "All namespaces must have an "owner Tlabel"
labels:
— key: owner
allowedRegex: "~[a-zA-Z]+.example.demo$"

REDGUARD

Open POlicy Agent (OPA)

Example in plain Rego:

package kubernetes.admission

deny[msg] {

input.request.kind.kind == "Pod"

some 1

image := input.request.object.spec.containers[i].image

not startswith(image, "example.com/")

msg := sprintf("image '%v' comes from untrusted registry", [imagel)

REDGUARD

Open POlicy Agent (OPA)

Example in plain Rego:

package kubernetes.admission

deny[msg] {

input.request.kind.kind == "Pod"

some 1

image := input.request.object.spec.containers[i].image

not startswith(image, "example.com/")

msg := sprintf("image '%v' comes from untrusted registry", [imagel)

There are of course alternatives to OPA (like e.g. Kyverno).

MONITORING AND
VISIBILITY

Know what's going on

Network (Policies)

=] default

Source Pod Na...
tiefighter
deathstar-5b7489bc...

xwing

v No service selected

Source Service
class=tiefighter...
class=deathstar...

class=xwing default

default

'l:[' View options

spaceship

= Ingress

o' = Egress

spaceship

= Ingress

Destination Pod...

deathstar-5b7489be...

tiefighter

deathstar-5b7489be...

" = Egress

cluster:default

idefault

Flows @ Policies

Destination Ser... Destination IP

10.0.1.42 default 10.0.1.42
10.0.2.42 default 10.0.2.42
10.0.2.64 default 10.0.2.64

nip:y deathstar

=>f* Ingress o’ = Egress

All Statuses v HTTP Status v

Destination Port Destination L7 I...
TCP:80
TCP:56086

TCP:80

Cilium Service Map & Hubble Ul

Status
forwarded
forwarded

forwarded

REDGUARD

SECURING YOUR ASSETS

» Updatein19s

Columns v

Last Seen
2 minutes ago
2 minutes ago

2 minutes ago

. REDGUAIRD
Cluster / Pods / Containers

e Prometheus / Grafana
e Elasticsearch / Fluentd / Kibana (EFK)
e Splunk

e StackRox

e Portshift

e dynatrace

e OpenShift

e Sysdig

e Starboard

e Octant

e Lens

CCCCCCCCCC

rrrrrrr

EEEEEEEEEEEEE

REDGUARD

SECURING YOUR ASSETS

Falco

e Monitoring all the way down to Linux syscalls if you like.
e Simple anomaly detection due to containers.

e Generates alerts when a treat is detected

e Simple but powerfull rule engine

IMHO the one must-have security monitoring tool for Kubernetes.
(Even more so in combination with Falcosidekick)

REDGUARD

Audit Log

e The component to log (security relevant) events in Kubernetes (or more specific the
Kubernetes API)

Can basically catch everything
Not enabled by default

e Needs tuning to get the "right amount" of information
o Else you can expect Gigabytes of audit logs per day

e |s very valuable in case of an incident.
o Or even just to do normal debugging of the cluster.

REDGUARD
Summary

e Have a great team that knows what they're doing (they likely need proper training)
e Perform basic hardening on containers, nodes and Kubernetes on a regular basis
e Use RBAC with an appropriate permission model

e Have a guideline/policy in place that explains the required security measures and
what their actual purpose is

e Use admission controllers to enforce your security requirements
e Have a working security monitoring in place

REDGUARD

Take Away SSSSSSSSSSSSSSSSSS

Kuberetes scales
but so do It's security issues

Q&A

What more do you want to know about k8s security?

K8S HACKING CHALLENGE

Let's get to work

